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Dispersion forces between oscillators : 
a semi-classical treatment 

J MAHANTYt and B W NINHAM’: 
Research School of Physical Sciences, Institute of Advanced Studies, 
The Australian National University, Canberra, ACT 2600, Australia 

MS received 9 May 1972 

Abstract. It is shown that a semiclassical treatment of dispersion forces, based on the 
dependence of the zero point energy of two oscillators coupled to the electromagnetic field 
on their distance of separation gives the retarded and nonretarded form of the dispersion 
forces between them. 

1. Introduction 

The theory of dispersion forces between atoms and molecules has been investigated 
in great detail (Margenau and Kestner 1969) since London (1930a) gave his treatment 
of van der Waals forces. There are interesting physical features of the interaction of 
two molecules through their mutual coupling with the electromagnetic field which 
makes it possible to study the essential physics of the problem in a semiclassical frame- 
work. From this point of view, at the absolute zero of temperature the interaction is 
due to changes in the zero point energy of the coupled system as the distance between 
the molecules is altered. The electromagnetic field which causes the coupling can be 
treated classically, and we get the same result as had been obtained earlier by Casimir 
and Polder (1948) from consideration of the change of the zero point energy of the 
electromagnetic field. The object of this paper is to elaborate on this theme, taking 
the molecules as oscillators embedded in the electromagnetic field. 

An oscillator in isolation has a sharp frequency, so that its frequency distribution 
function is a 6 function. When it is coupled to a large assembly of oscillators, or in the 
continuum limit, to a field, the effect of the coupling is to convert the 6 function into a 
spread-out spectral density function in a manner that can be computed in terms of the 
coupling constant and the spectrum of frequencies of the system to which it is coupled. 
This approach, for instance, is the basis of the ‘pseudomolecular model’ for the vibra- 
tions of impurities in crystals (Sachdev and Mahanty 1970). 

The ground state energy of the oscillator (if it has more than one frequency) is 
given by 

d In D,(w) 
d o  

dw 
h 1  
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where D,(w) is the secular determinant, and the contour C is so chosen as to include 
the positive real axis in the w plane. The latter contour integral form is valid because 
(d/do) In D,(w) has simple poles at the zeros of D,(w). When the oscillator is coupled 
to a field there will be a change in its secular determinant, and the difference 

where D,(to) is the secular determinant in the coupled situation, is a measure of the 
selfenergy of the oscillator. When two such oscillators are coupled to the field, the 
interaction energy is the difference between the energy of the pair and the selfenergies 
of the two oscillators 

Here D 2 ( o )  and D,,(o) are the secular determinants when the second oscillator is 
coupled to the field, and when both are coupled to the field respectively. Such formulae 
have been used in lattice dynamics to evaluate the interaction of a pair of impurities 
in a crystal (Maradudin et al 1963). An integration by parts and a suitable choice of 
the contour including the imaginary axis makes it possible to write equation (3) in the 
form 

f l  is 

E( 1,2) = jo In R(w) dw. (4a) 

Here In Qw) is evaluated on the imaginary axis by analytic continuation of the function 

D, 2(o + ir) 
D,(w+ic)D,(w+ir) R(w) = lim+ 

Equation (4) will be the basis of the present treatment. 

2. Formulation of the problem 

Let us consider two identical three dimensional anisotropic oscillators, in each of which 
the oscillating particle is an electron, and there is a positively charged heavy core to 
keep the system electrically neutral. If A and 0 are the vector and scalar potentials of 
the electromagnetic field, the classical equations of motion are 

dr, 
--(V - R I )  +-d(r - R2) dt 

1 do 
V . A + - -  = 0 

c at 

e (MG+V)r d2 - -  
’ t, + eV@(R,, t). 

2 - c  at 

Here M and V are the mass and potential energy matrices of each oscillator, R j  is the 
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equilibrium location and rj  the displacement from equilibrium of the jth oscillator, 
and the 6 functions in equation (5b) demand that the particular solution of interest is to 
be obtained with the oscillators, regarded as points, at positions R ,  and R , .  Since we 
are interested in the distribution of the frequencies of the oscillators we take the Fourier 
time transform to obtain 

ioe 
(V - Mo2)ul(o) = c d ( R , ,  o) + eVq(R, , o) ( 6 4  

4rcioe ( v 2 + $ ) d ( r , m )  = - (u l (o )6 ( r -R l )+u , (o )6 ( r -R , ) }  C 

i o  
V .  d ( r ,  o)+ -q ( r ,  o) = 0 

C 

ioe  
(V - Mw2)u2(o) = c d ( R , ,  w)  + eVcp(R2, o). 

Here 
CO 

d ( r ,  o) = - S d ( u ,  t )  exp( - iwt) dt 
J ( 2 4  - 0 0  

i r m  

To obtain the secular determinant for the two oscillators we solve for d ( r ,  w)  from 
equation (6b) 

4rtiwe 
d ( r , o )  = - { u , ( o ) G ( r - R , ; o ) + u , ( o ) G ( r - R , ;  C U)}  (8) 

where the Green function matrix G(u-r’;  o) is 

d3k exp{ik. ( r - r ‘ ) }  G ( ~ - v ’ ; c o )  = I- w3 ’ S 02/c2-k2 (9) 

and I is the unit matrix. Using equation (8), d and cp can be eliminated from equation 
(6a) and (6d), and the final result is 

G(-R;~)+4~e2{VrVrG(~-Rl;~)}r=R2 u,(w) = 0 (lob) 
4rco2e2 
+(7- 

where R = R ,  - R , .  
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The secular determinant is thus given by, 

D12W = 

where 

4z02e2 
V-Mw2+- G(O ; w)  + 4ne23(0 ; 0) i C 2  

3 ( r  - Y' ; O) = V,V,G(V - I" ; O) 

In this case Dl(w)  and D2(w) both have the form 

G(0; o)+4ne2r$(0; o) 
47cu2e2 

D,(w) = D2(w) = V - Ma2 +- c2  
We thus have 

G(O ; 0) + 4ne2(B(0 ; w) 

47ce2w2 V-Mw2+-yj---G(O;~) 
C 

If we are interested in terms of order (e4), we obtain 

I In[Dly)iE(w,] 'U -16n2e4Tr 

x {V-Mw2)- '  x . (1 5 )  

Using this in equation (4) we get (with the substitution w = it) 

E(1,2) E E(R) = 
27-K 

3. The isotropic oscillator-retarded and nonretarded limits 

To get the essential physics from this point on we simplify the problem by assuming 
that the oscillators are isotropic, so that (V + Mt2) is a scalar matrix 

V + Mt2 m(wg + t2)l. (17) 
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Also 

and 

Hence, equation (16) becomes 

E(R) = -- - 
277 m2R2 Jo (U; + (2)2 

The nonretarded limit is obtained when c + CO, and in that case 

3he4 
E(R) = 

This is the London (1930b) limit. 
In the retarded case, with a substitution (R/c  = x ,  equation (20) becomes 

Ace4 dx exp(-2x) 
nm2R’ Jo {U; + ( x ~ c ~ / R ~ ) } ~  

E(R) = -- (x4 + 2x3 + 5x2 + 6x + 3). 

1451 

(18)  

This admits of an asymptotic series expansion in powers of 1/R, but the leading term is 

23Ac e4 
E(R) = -- - 

4nR7 m20:’ 

This is essentially the Casimir-Polder result (Casimir and Polder 1948), when (e4/m2w$) 
is identified with the product of the static polarizabilities of the two oscillators. 

The complete expression for the interaction energy in this semiclassical approach 
is given by 

4e4 { ( ( / c R ) + ( ~ / R ~ ) } ~  exp( -25Rlc) 

A point of interest is that selfenergy of a single oscillator given in equation (2) 
diverges, even though the interaction energy of two oscillators given in equation (3) 
converges. The divergence of the selfenergy term is well known in quantum electro- 
dynamics; such a divergence does not occur in the corresponding problem in lattice 
dynamics because of the nature of the dispersion law in a lattice which provides an 
upper bound to the frequencies. However, even though the selfenergy diverges, it is 
possible to obtain an intensity distribution formula for the radiation from the oscillator 
which will be damped because of radiation from it. This formula is merely the frequency 
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distribution function of the oscillator when it is coupled to the electromagnetic field, 
and can be obtained from equation (13). Thus 

I o  d I o  d I(w) = - Im - In D1(w)~o-io+ = - -P(o )  
7c d o  7c d o  

where 

1 Im D,(o-iO+) 
ReD,(w-iO+) 

P ( o )  = tan-’ 

and I o  is so chosen as to normalize the distribution function. The calculations can be 
completed trivially and the result in the isotropic case is 

6e2 3 0 2 0 ;  - w4 
I ( 0 )  = I,- 

3 7 ”  (o; - 02)’ + ( 2 e 2 ~ 3 / 3 m ~ 3 ) 2  ’ 

For o in the neighbourhood of coo the above expression reduces to 

1 
(ao -U)’ +&2e2033c3m)2’ 

This can be compared with the well known radiation damping formula of an oscillator 
(Heitler 1954) where the damping constant is given by 

The factor 3 in equation (28) arises because we have three identical oscillators in this 
model. 

In conclusion, it is interesting to evaluate the range of values of R for which the non- 
retarded limit holds. It may be noted from equation (11) and the small R behaviour 
of the Green functions in equations (18) and (19) that the splitting of the oscillator 
frequencies is of the order of ( e 2 / R 3 ) .  The natural line width is of the order of ezo;/c3. 
Hence, if the splitting is more than the natural line width, that is, if R < c/oo the splitting 
will predominate and London’s nonretarded treatment will be valid. This, of course. 
is the same condition as the one stated by Casimir and Polder on the ground that if 
R > c / o o ,  the retardation effect will predominate, although the approach here is 
somewhat different. The expression for the interaction energy given in equation (24) 
is formally similar to that given by Mitchell et a1 (1972) from a different point of view, 
for the interaction energy between two molecules. 
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